The analytic computability of the Shannon transform for a large class of random matrix channels

نویسنده

  • N. Raj Rao
چکیده

We define a class of “algebraic” random matrix channels for which one can generically compute the limiting Shannon transform using numerical techniques and often enumerate the low SNR series expansion coefficients in closed form. We describe this class, the coefficient enumeration techniques and compare theory with simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The analytic computability of the Shannon transform for a large class of random matrix channels

We define a class of “algebraic” random matrix channels for which one can generically compute the limiting Shannon transform using numerical techniques and often enumerate the low SNR series expansion coefficients in closed form. We describe this class, the coefficient enumeration techniques and compare theory with simulations.

متن کامل

Determination of weight vector by using a pairwise comparison matrix based on DEA and Shannon entropy

The relation between the analytic hierarchy process (AHP) and data envelopment analysis (DEA) is a topic of interest to researchers in this branch of applied mathematics. In this paper, we propose a linear programming model that generates a weight (priority) vector from a pairwise comparison matrix. In this method, which is referred to as the E-DEAHP method, we consider each row of the pairwise...

متن کامل

Fractional Fourier Transform Based OFDMA for Doubly Dispersive Channels

The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...

متن کامل

Differential Transform Method to two-dimensional non-linear wave equation

In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...

متن کامل

The Polynomial Method for Random Matrices

We define a class of “algebraic” random matrices. These are random matrices for which the Stieltjes transform of the limiting eigenvalue distribution function is algebraic, i.e., it satisfies a (bivariate) polynomial equation. The Wigner and Wishart matrices whose limiting eigenvalue distributions are given by the semi-circle law and the Marčenko-Pastur law are special cases. Algebraicity of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0712.0305  شماره 

صفحات  -

تاریخ انتشار 2007